
Patchwork
Release

Jun 20, 2018

Contents

1 Roadmap 3

2 Contents 5

3 API documentation 7

Python Module Index 11

i

ii

Patchwork, Release

Patchwork is a mid-level library of Unix system administration primitives such as “install package” or “create user
account”, interrogative functionality for introspecting system state, and other commonly useful functions built on top
of the Fabric library.

Specifically:

• Primary API calls strive to be idempotent: they may be called multiple times in a row without unwanted changes
piling up or causing errors.

• Patchwork is just an API: it has no concept of “recipes”, “manifests”, “classes”, “roles” or other high level
organizational units. This is left up to the user or wrapping libraries.

– This is one way Patchwork differs from larger configuration management frameworks like Chef or Puppet.
Patchwork is closest in nature to those tools’ “resources.”

• It is implemented in shell calls, typically sent over SSH from a local workstation.

– However, where possible, its functions expect a baseline Invoke Context object and can thus run locally
or remotely, depending on the specific context supplied by the caller.

Contents 1

http://fabfile.org
http://opscode.com/chef/
http://puppetlabs.com
http://docs.pyinvoke.org/en/latest/api/context.html#invoke.context.Context

Patchwork, Release

2 Contents

CHAPTER 1

Roadmap

While Patchwork has been released with a major version number to signal adherence to semantic versioning, it’s still
early in development and has not fully achieved its design vision yet.

We expect it to gain maturity in tandem with the adoption and development of Fabric 2. It’s also highly likely that
Patchwork will see a few major releases as its API (and those of its sister library, invocations) matures.

3

https://invocations.readthedocs.io

Patchwork, Release

4 Chapter 1. Roadmap

CHAPTER 2

Contents

2.1 Changelog

• #17: Missed some .succeeded attributes when porting to Fabric 2 - they should have been .ok. Patch via
Lucio Delelis.

• : Fix a bug in patchwork.transfers.rsync where it would fail with AttributeError unless your
connection had connect_kwargs.key_filename defined.

• #20: (via #21) patchwork.transfers.rsync didn’t handle its exclude parameter correctly when
building the final rsync command (it came out looking like a stringified tuple). Fixed by Kegan Gan.

• #23: Fix some outstanding Python 2-isms (use of iteritems) in info.distro_name and info.
distro_family , as well as modules which imported those – such as packages.

Includes adding some basic tests for this functionality as well. Thanks to @ChaoticMind for the report.

• : Pre-history.

5

https://github.com/fabric/patchwork/issues/17
https://github.com/fabric/patchwork/issues/20
https://github.com/fabric/patchwork/issues/21
https://github.com/fabric/patchwork/issues/23

Patchwork, Release

6 Chapter 2. Contents

CHAPTER 3

API documentation

3.1 environment

Shell environment introspection, e.g. binaries in effective $PATH, etc.

patchwork.environment.have_program(c, name)
Returns whether connected user has program name in their $PATH.

3.2 files

Tools for file and directory management.

patchwork.files.append(*args, **kwargs)
Append string (or list of strings) text to filename.

When a list is given, each string inside is handled independently (but in the order given.)

If text is already found in filename, the append is not run, and None is returned immediately. Otherwise,
the given text is appended to the end of the given filename via e.g. echo '$text' >> $filename.

The test for whether text already exists defaults to a full line match, e.g. ^<text>$, as this seems to be
the most sensible approach for the “append lines to a file” use case. You may override this and force partial
searching (e.g. ^<text>) by specifying partial=True.

Because text is single-quoted, single quotes will be transparently backslash-escaped. This can be disabled
with escape=False.

patchwork.files.contains(*args, **kwargs)
Return True if filename contains text (which may be a regex.)

By default, this function will consider a partial line match (i.e. where text only makes up part of the line it’s
on). Specify exact=True to change this behavior so that only a line containing exactly text results in a True
return value.

7

Patchwork, Release

This function leverages egrep on the remote end (so it may not follow Python regular expression syntax
perfectly), and skips the usual outer env.shell wrapper that most commands execute with.

If escape is False, no extra regular expression related escaping is performed (this includes overriding exact
so that no ^/$ is added.)

patchwork.files.directory(*args, **kwargs)
Ensure a directory exists and has given user and/or mode

patchwork.files.exists(*args, **kwargs)
Return True if given path exists on the current remote host.

3.3 info

Functions for interrogating a system to determine general attributes.

Specifically, anything that doesn’t fit better in other modules where we also manipulate this information (such as
packages). For example, detecting operating system family and version.

patchwork.info.distro_family(c)
Returns basic “family” ID for the remote system’s distribution.

Currently, options include:

• debian

• redhat

If the system falls outside these categories, its specific family or release name will be returned instead.

patchwork.info.distro_name(c)
Return simple Linux distribution name identifier, e.g. "ubuntu".

Uses tools like /etc/issue, and lsb_release and fits the remote system into one of the following:

• fedora

• rhel

• centos

• ubuntu

• debian

• other

3.4 packages

Management of various (usually binary) package types - OS, language, etc.

patchwork.packages.package(c, *packages)
Installs one or more packages using the system package manager.

Specifically, this function calls a package manager like apt-get or yum once per package given.

patchwork.packages.rubygem(c, gem)
Install a Ruby gem.

8 Chapter 3. API documentation

Patchwork, Release

3.5 transfers

File transfer functionality above and beyond basic put/get.

patchwork.transfers.rsync(c, source, target, exclude=(), delete=False, strict_host_keys=True,
rsync_opts=”, ssh_opts=”)

Convenient wrapper around your friendly local rsync.

Specifically, it calls your local rsync program via a subprocess, and fills in its arguments with Fabric’s current
target host/user/port. It provides Python level keyword arguments for some common rsync options, and allows
you to specify custom options via a string if required (see below.)

For details on how rsync works, please see its manpage. rsync must be installed on both the invoking system
and the target in order for this function to work correctly.

Note: This function transparently honors the given Connection’s connection parameters such as port number
and SSH key path.

Note: For reference, the approximate rsync command-line call that is constructed by this function is the
following:

rsync [--delete] [--exclude exclude[0][, --exclude[1][, ...]]] \
-pthrvz [rsync_opts] <source> <host_string>:<target>

Parameters

• c – Connection object upon which to operate.

• source (str) – The local path to copy from. Actually a string passed verbatim to rsync,
and thus may be a single directory ("my_directory") or multiple directories ("dir1
dir2"). See the rsync documentation for details.

• target (str) – The path to sync with on the remote end. Due to how rsync is imple-
mented, the exact behavior depends on the value of source:

– If source ends with a trailing slash, the files will be dropped inside of target.
E.g. rsync(c, "foldername/", "/home/username/project") will drop
the contents of foldername inside of /home/username/project.

– If source does not end with a trailing slash, target is effectively the “parent” direc-
tory, and a new directory named after sourcewill be created inside of it. So rsync(c,
"foldername", "/home/username") would create a new directory /home/
username/foldername (if needed) and place the files there.

• exclude – Optional, may be a single string or an iterable of strings, and is used to pass
one or more --exclude options to rsync.

• delete (bool) – A boolean controlling whether rsync’s --delete option is used. If
True, instructs rsync to remove remote files that no longer exist locally. Defaults to False.

• strict_host_keys (bool) – Boolean determining whether to enable/disable the SSH-
level option StrictHostKeyChecking (useful for frequently-changing hosts such as
virtual machines or cloud instances.) Defaults to True.

• rsync_opts (str) – An optional, arbitrary string which you may use to pass custom
arguments or options to rsync.

3.5. transfers 9

http://docs.fabfile.org/en/latest/api/connection.html#fabric.connection.Connection
http://docs.fabfile.org/en/latest/api/connection.html#fabric.connection.Connection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Patchwork, Release

• ssh_opts (str) – Like rsync_opts but specifically for the SSH options string (rsync’s
--rsh flag.)

10 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

Python Module Index

p
patchwork.environment, 7
patchwork.files, 7
patchwork.info, 8
patchwork.packages, 8
patchwork.transfers, 9

11

Patchwork, Release

12 Python Module Index

Index

A
append() (in module patchwork.files), 7

C
contains() (in module patchwork.files), 7

D
directory() (in module patchwork.files), 8
distro_family() (in module patchwork.info), 8
distro_name() (in module patchwork.info), 8

E
exists() (in module patchwork.files), 8

H
have_program() (in module patchwork.environment), 7

P
package() (in module patchwork.packages), 8
patchwork.environment (module), 7
patchwork.files (module), 7
patchwork.info (module), 8
patchwork.packages (module), 8
patchwork.transfers (module), 9

R
rsync() (in module patchwork.transfers), 9
rubygem() (in module patchwork.packages), 8

13

	Roadmap
	Contents
	API documentation
	Python Module Index

